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ABSTRACT .

Binary sequences have had application in communication

. systems for many years. Shift registers have been used in
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their generation, because of the ease and economy of their
operation. For certain applications, nonlinear feedback

functions are used by shift registers of span n to generate
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sequences of lengths up to 2n,
The sequences of maximum length 2" and their generation
are the subject of this thesis. In particular the ways

of generating these sequences using nonlinear feedback
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shift registers and their correlation to linear feedback
shift registers are described. Complexity is the term
given to the length of the shortest linear feedback shift
register generating a maximum length 2 sequence.

Games and Chan [Ref. 1] have given considerable study

to the subject of complexity. Some of the problems they

left are discussed further in this paper. 1It will be shown
that the complexity of a de Bruijn sequence (S) is the same
as the complexity of its reverse (r S), complement (5), and
its reverse complement (r S5). Sequences (S) for which r S =
S are termed RC sequences. It is shown that RC sequences

exist for every odd n>3. In addition a lower bound will be
established for the number of RC sequences occurring for

each odd n.
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I. INTRODUCTION

A. APPLICATION

de Bruijn sequences have been the subject of recurring
interest since their discovery over a century ago. Recent

developments in radar ranging [Ref. 2: Ch. 13], error correct-

-

ing codes, secure or limited access code generators [Ref. 3:
pp. 12-14], and mathematical modeling have made application
of de Bruijn sequences because of their properties. The

binary shift registers readily model digital computers with

+

. - :
electronic states where "1™ indicates the on state and "0"

indicates the off state.\

B. DEFINITION OF de BRUIJN SEQUENCES
For a positive integer n, a de Bruijn sequence of span
n is a complete binary cycle of length 2" which is a sequence

S = {s;, S4, ***, s _} taken in circular order (s, follows
1 2 on A 1
S n) such that all possible n-tuples occur exactly once.
2
[Ref. 4: p. 120]. Complete binary cycles are often called

de Bruijn sequences after the Dutch mathematician, N. de

Bruijn, who in 1946 proved the existence of complete binary
n-1
cycles having length 2" and that they numbered 22 n,

de Bruijn was preceeded by Flye Saint-Marie a half century

earlier in an obscure publication [Ref. 5]. As an example
3-1
2 -3

for n = 3, Table 1.1 shows both (2 ) de Bruijn sequences

11




........................................

of length eight (23). Both of these sequences are examined
to confirm that each of the eight 3-tuples occur exactly
once. Notice that 2 elements of the sequence are repeated
as signified by the bar (00), which was necessary on each

sequence to complete the last two 3-tuples.

TABLE 1.1
3-TUPLE COMPOSITION OF de BRUIJN SEQUENCES OF SPAN 3

0001110100 0001011100
000 000
001 . 001
011 010
111 101
110 011
101 111
010 110
100 100

There are 2" different possible starting points for
each de Bruijn sequence; however, each cyclic permutation
is considered equivalent. It is often a matter of conveni-
ence to start each sequence in a canonical way with the all
zero or all one n-tuple. This reduces confusion when working

with a number of different de Bruijn sequences.

C. PSEUDO-RANDOMNESS

Since each binary n-tuple occurs exactly once on the
cycle, the sequence models a uniform distribution with the
probability of given n-tuple occurring to be exactly 1/Zn.

The sequence is not entirely random, however, since each
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n-tuple (a1 a, s an) has but two possible successors

(0 a; a, °*° a, _; or 1 a, a, **-* an-l)' de Bruijn sequence§
satisfy the randomness properties of equidistribution of

0's and 1's and run lengths [Ref. 3: p. 10] which would be
expected from the tossing of a fair coin. Thus, de Bruijn

sequences have a pseudorandom property.

D. K-ARY SEQUENCES
In general it is possible to work with k possible states
for each position of an n-tuple. Flye Saint-Marie in 1894,

showed the existence and determined the number of complete
cycles for n-tuples of k characters to be [(k—l)!]kn-lkkncl'n.
[Ref. 5]. This report is restricted to the binary case

(k = 2) due to its principal application in electronic com-

munications and computers.

E. DEFINITIONS
For S = {s1 Sy oo sk} where s; € {0,1} for 1<i<k the
following are defined:

1. Let W(S) denote the weight of S.

k
W(S) = ¢ $;

i=1
e 2. Let P(S) denote the parity of S.
e K
e P(S) =L s; (mod 2)
¥ e
-
E.!!
x 13
3
3




3.

Let 1(S) denote the length of S.

1(s) = k where k is the number of positions in S.

TR S~ . e T TN
SAS ot A AR R« S ChA R ol SO0 AN AN 20 15 20 ACH S Wl AT i A Suteil & £ ALAS Uity w2 S inh LN i SRl i S S R A A A
- - - . e - - - . . e - - - %o T - =T

N R SR DRI S S I A
A N S e L A



T e w Tt T LT T T T AT T A TR AT A T A Y TN TV ETE T LYY R L it el wag —~———
AR Ui B . e e e O A e Al R e e e e e e R T

- | ST R N

g

"'.-'..f . .l .. '....Q ..

‘:.'A” F.

N

II. SEQUENCE GENERATORS AND OPERATORS

A. SHIFT REGISTERS

In practice shift registers are used to generate de Bruijn
sequences. An n-stage shift register has n memory registers
(xl, Xy, *°%, xn) which shift their contents (0 or 1) to the
next register upon command. For example, in Fig. 2.1, the
contents of Xy will transfer to Xy, X, to x5, etc., at the
appropriate time with Xn serving as the output. However,
the contents of an n-stage shift register would empty in

n shifts if no input was provided to Xy .

r==-
*1 -” 2 F-’: ¥y ¥ Xy [ OUT

Fig. 2.1 n-Stage Shift Register.

B. FEEDBACK SHIFT REGISTERS

Feedback networks are added to provide an input to the
1st stage of the shift register. Note that in practice
the output can be taken from any stage of the shift register.
In fact, the contents of any stage is the same as the con-

tents ¢f any stage is the same as the contents of the nth

15



stage, merely shifted by a certain amount. 1In Fig. 2.2 the
feedback function f is added to the n-stage shift register

to generate non-trivial sequences. The coefficients

ag, a1, °**, a, are 0 or 1 with ag = a, = 1.
r"’—)
: |
IR SR S SN Y B g e
e

Feedback
Loop

Fig. 2.2 n-Stage Feedback Shift Register.

1. Linear Feedback Functions

A feedback function f is classified as linear if

the function f (xl, Xq, --o,xn) is restricted to be of the

" n
o form £ = T a, x; where the addition is modulo 2 addition.
i=1

The addition (mcd 2) table is given in Table 2.1 below.

:.J%

Note that subtraction is equivalent to addition when opera-

1@

ting modulo 2.

X,

A
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TABLE 2.1
ADDITION (MODULO 2)

8 |0 1
0 lo 1
’ 101 o0

2. Nonlinear Feedback Functions

If the feedback function f(xl, LRI xn) utilizes
multiplication (mod 2) and addition (hod 2) then the feed-
back function is nonlinear. (We also say that the linear
feedback functions are vacuously nonlinear feedback functions.)
Modulo 2 multiplication is identical to multiplication in
the integers with the restriction of the alphabet used

being the set {0, 1} as described in Table 2.2.

TABLE 2.2
MULTIPLICATION (MODULO 2)

3. Comparison of Linear and Nonlinear Feedback Functions

Considerable research has been devoted to the study
of linear feedback functions because of their ease of analy-

sis. Nonlinear feedback functions are much more complicated.

17
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However, the class of sequences that can be generated by
nonlinear functions is much greater than for linear functions.
The number of binary maximum length (Zn-li linear
sequences that can be generated by a n-stage linear feed-
back shift register (LFSR) is approximately 2; [Ref. 7].
The reason that the maximum length linear sequences only
have length 2™-1 is that the zero state is a fixed point
under the linear function. This poses no problem since the
maximal length linear sequences are readily made into
de Bruijn sequences having length 20 simply by adding a
zero to the (n-1)-tuple of zeros. The feedback function
involved then becomes a nonlinear function.

By comparison the number of binary nonlinear full

length sequences (Zn) that can be generated by a nonlinear

. 7“'1-
feedback shift register (NFSR) is exactly 2~ n Below,

Table 2.3 compares these numbers for 3<n<8. The number of
maximum length sequences will be of interest later in
Section III, where the concept of complexity in generating
these sequences will be developed. Various algorithms are
listed in a survey by Fredricksen [Ref. 5] for generating

de Bruijn sequences.

C. SUCCESSOR AND PREDECESSOR STATES
The contents of an n-stage shift register at a specific
time is usually referred to as its ''state'. As mentioned

in Section I when discussing the pseudorandomness of de Bruijn

18
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TABLE 2.5
NUMBER OF MAXIMUM LENGTH SEQUENCES

n Linear Nonlinear
3 2 2

4 4 16

5 6 2048

6 6 67,108,864
7 18 1.4 x 10%7
8 30 2.7 x 10°°

sequences each state has two possible successor (conjugate)
states depending on whether the feedback function generates
a "0" or "1" as the input to register Xq- Likewise each
state has two predecessor (companion) states depending on
whether the previous output was a "0" or "1". The adjacéncy

quadruple in Fig. 2.3 centers around then (n-1)-tuple XyeoeX,

That is, each input state has two possible successors depend-

L N

4.,-,;,..7
ORGP

ing on whether the feedback is 0 or 1, and each output state
has two possible predecessors depending on whether the pre-

th stage was 0 or 1.

vious output from the n
In Table 2.4 we show an example for n = 3 of the possible

successors and predecessors for each state.

RAAAA

*

4'.:"0 _-. K

-
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Fig. 2.3 Adjacency Quadruple.

TABLE 2.4
CONJUGATE AND COMPANION STATES (n=3)

Predecessors State Successors
000-001 000 000-100
010-011 001 000-100
100-101 010 001-101
110-111 011 001-101
000-001 100 010-110
010-011 101 010-110
100-101 110 011-111
110-111 111 011-111

Output Input

D. de BRUIJN DIAGRAMS
The de Bruijn diagram compactly contains all the above
information. The diagram contains 2™ vertices corresponding

to the 2™ states and two directed edges from each state to

20
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the possible pair of successor vertices. As a result two
arrows exit every vertex leading to conjugate statés, and
two arrows enter every vertex arriving from companion states.
For an example consider the de Bruijn diagram Gn for n = 3

in Fig. 2.4. An Eulerian path through Gn is defined as a

000

010

101

110 011

L)
&

111

LA

~
'I
Vo
'
-

T r
COAh

gt &

1 4

’,

Fig. 2.4 Graph Gs.
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path which visits each edge exactly once. A path which
visits every vertex of Gn is called a Hamiltonian path. A
Hamiltonian path in Gn is a de Bruijn sequence of span n.
If the edges of Gn are labeled with an n + 1-tuple defined
by the labels on the predecessor and successor states, then
the Eulerian paths in Gn correspond to Hamiltonian paths--

and de Bruijn sequences in the graph G The Hamiltcnian

n+l’
path in Fig. 2.5 is a subgraph of G3 in Fig. 2.4 with exactly

one edge emanating from each vertex.

E. OPERATORS

For S = where s, ¢ {0,1} for l<i<n the

$1 82 °°° Sp-1 5

following operators are defined.

1. 1Identity Operator

The identity operator (e) operating on S denoted
Sh-1 55 = S
2. Reverse Operator

eS = sl 52 s e

The reverse operator (r) operating on S is denoted

r S, where r S = Sp Sp-1 °°° S Sp- The reverse operator

r 3
LTI,

preserves the weight, parity and length of S. Note also

that (r)2 =z e.

3. Complement Operator

v W "
PO

SAANT 1A

The complement (dual) operator on S is denoted d S

or §, where § = $p 55 5,4

Sh such that S, = s e 1

(mod 2) for 1l<i<n.
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Lemma 1: If W (S) = k for S = Sy S, *°° s, then
W (5) = n-k.
Proof: W (S} = k implies k non:zero elements € S
and n-k zero elements ¢ S.
Complementing n-k zero elements produces
n-k nonzero elements ¢ S.
. W (3) = n-k
Q.E.D.
{s

Lemma 2: If P (S) = a where a ¢ {0,1} and S 1 Sy *°* S },

n
then P (S) is a iff n is even.

n
Proof: P (S) = ¢ S5 (mod 2) = a
i=1
n _ n
P (5 = : s; (mod 2) = = s; ®1=a@®n
i=1 i=1
therefore P (5) = P (n-a)
Q.E.D.

Also note (d)2 = e, and that the reverse and comple-
ment operators are commutative, i.e. rd = dr.

4. Reverse Complement Operator

The reverse complement operator on S is denoted
rS = Sp Sp-1 "°° Sz S} - Weight and parity are effected
by the reverse complement operator exactly as with the
complementation operator.

These operators apply to sequences as well, since

sequences are composed of n-tuples. Table 2.6 shows the

effect of operators on de Bruijn sequences of span 3 and 4

24
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where r S, S, and r § are all de Bruijn sequences, as they

always are if S is a de Bruijn sequence.

TABLE 2.5
de BRUIJN SEQUENCE OPERATORS

n =23 (Canonical Form)
S = 00011101 = 00011101
rS = 10111000 = 00010111
S = 11100010 = 00010111
rS = 01000111 = 00011101
n =4 (Canonical Form)
S = 0000111101001011 = 0000111101001011
rS = 1101001011110000 = 0000110100101111 .
S = 1111000010110100 = 0000101101001111
rS = 0010110100001111 = 0000111100101101

If as in the case for n = 3 in Table 2.5 a sequence
S is equivalent to its reverse complement, then S is termed
a RC sequence. This applies to both de Bruijn and non-
de Bruijn sequences. The following theorem appears in a
paper by Etzion and Lempel [Ref. 6].
Theorem 1: A sequence S is a RC sequence if & (S) is

even and S = {X, rX} for some X where X is a binary string.

25
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F. LINEAR RECURSION FORMULA
de Bruijn sequences generated by a nonlinear function

can also be generated by a linear function f (x1 cee X ) = X

n o)

having the linear recursion formula

[TI n Rt ]
o8]
tal
1]
(o]

j=0 4 73
h

Here each aj determines a tap to the jt stage of the

register. The linear generator polynomial must be

(x + 1)k for some positive integer k, due to the periods of
de Bruijn sequences (2“) and results from theorems given

by Golomb [Ref. 7: pp. 27-43].

1. Pascal Triangle (Mod 2)

The values for each aj are summarized in the Pascal

triangle (mod 2) Table 2.6 for various values of n. They
are the coefficients generated by the binomial expansion of

(x + 1)k mod 2.

TABLE 2.6
PASCAL TRIANGLE (MOD 2)

k =0 1
1 11
2 1 0 1
3 1 1 1 1
4 1 0o o0 o0 1
5 1 1 0 o0 1 1 (x+1)°

..........................




2 # s

a
‘s % s

e
PRI )

3
i

-
‘l

.
LPL N

$TaTATT
-A' '

-
a e

]
)

1

Xy

n"l—..

LR

|

« *

Al SoiC g -
Al b F.'J( '“‘jC‘J ‘k;'ﬁj(:‘j:‘i:‘L"T‘ .1r2-:1‘:q~ S b Sl 2 S it it 20 >4 v i ang - -
PR B S A A Y AR A A AR DA R AR i aie

LR T T R

2. Pascal Triangle Properties

(a) The aj sequence is palindromic, that is

=1, a, = a a, = a, -, etc.

n-1°
(b) The number of nonzero coefficients is even,
n

T a, =0 (mod 2).

that is
0 J

j
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ITI. COMPLEXITY OF de BRUIJN SEQUENCES

A. DEFINITION OF COMPLEXITY

The term complexity indicates a general measure of the
predictability of a sequence. Various definitions of con-
plexity are in use, but this paper will use the one given
by Chan and Games [Ref. 1]. Their definition of complexity
is the length of the shortest LFSR required to generate a
sequence. They apply their results primarily to de Bruijn
séquences. This definition is also the one used by Herlestom
[Ref. 8] to look at two different shift register cycle gen-
erators. For a de Bruijn sequence S, let C(S) denote the
complexity of S.

Previous results by Chan and Games [Ref. 1] establish

n-1 respectively for

lower and upper bounds of 2"~ 1in and 2
the complexity of a de Bruijn sequence. Thus, the length

of a LFSR is almost as long the sequence as opposed to a
n-stage NFSR which generates the sequence. Table 3.1 serves
as a ready reference for the upper and lower limits of

complexity for 3<n<8. The upper bound is known to be attained

for all n and the lower bound for all n<é6.

B. COMPLEXITY ALGORITHM
A fast method for determining the complexity of a de

Bruijn sequence was developed by Games and Chan [Ref. 9]




'''''''

P’
L S

1
LA

SUEE

AL N

e

4T Y Y S Y I @ A Y S A

TABLE 3.1
LIMITS OF COMPLEXITY

Span Lower Bound Upper Bound
(n) (2" Len) = (2"-1)
3 7 7

4 12 15

5 21 31

6 38 63

7 71 127

8 136 255

and is represented by the flow chart in Fig. 3.1. Let S be
a de Bruijn sequence then R(S) = 2", Further let S = A:B = D

where A = {a, a, --- 3 an? B = {by b, *-- bzn-l} then

azn‘l

D = {a1 a, =+ a b; by +*- b } To serve as a guide

-1°
LN
an example for n = 5 is now presented. Let the de Bruijn

—,n‘l
]

sequence S = {11111000001000110101100101001110} having length

2 = 32.
A 1111100000100011 2 = 16
B 0101100101001110 C= 0
A+B 1010000101101101 C =16
A 10100001 2 = 8
B 01101101 C = 16
A+B 11001100 C = 24
29
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A 1100 L = 4 Since A®B = 0

B 1100 C =24
A+B 0000 C = 24 C is unchanged

A 11 L = 2

B 00 C = 24
A+B 11 C = 26

A 1 L = 1 Add 1 since 2 =1
B 1 C = 26 & A=1
A+B 0 C = 26 + 1 =27

C. COMPLEXITY DISTRIBUTION

The nature of the distribution of complexity of de Bruijn
sequences is the primary interest of this éaper. Let
@ (c,n) denote the number of de Bruijn sequences having com-
plexity ¢ and span n. The complexity distribution of de
Bruijn sequences of span n for 3<n<6 are listed in Table
5.2. Unfortunately the large number of de Bruijn sequences
for n>7 (257) does not allow an exhaustive examination of
their complexities.

Examination of this data led Chan and Games to conjecture

that for n>3 a (c,n) is congruent to 0 modulo 4.

D. EFFECTS OF OPERATORS ON COMPLEXITY
Chan et al. [Ref. 1] proved that a(c,n) for n>3 was con-

@ gruent to 0 modulo 2. By showing that for each de Bruijn

30
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TABLE 3.2
COMPLEXITY DISTRIBUTION
n =4 n=>5
c a(c,4) c a(c,5) ¢ a(c,5)
12 4 21 8 27 64
13 0 22 0 28 180
14 4 23 12 29 224
15 8 24 20 30 448
25 32 31 1024
26 36
n==6
c a(c,6) c a(c,6)
38 448 51 8704
39 0 52 18096
40 32 53 34224
. 41 96 54 67700
42 160 55 126592
43 80 56 259320
44 432 57 519752
- 45 288 58 1041252
s 46 896 59 2090716
Moy 47 1168 60 4162352
o 48 2772 61 8342176
!5 49 2352 62 16692832
ooy 50 5224 63 33731200
éﬁ
o
i
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sequence having complexity c, there exists another different
de Bruijn sequence § also having complexity c. Consequently
they showed that the complement operator does not change the
complexity of a de Bruijn sequence. Using a different

approach, the next theorem will show that the complexity of
a de Bruijn sequence is also the complexity of the de Bruijn
sequences defined by the reverse operator and by the reverse

complement operator as well.

Lemma 3. For S = {s1 Sy *** S 1}, a de Bruijn sequence,
- ¢ 20"
C(S) = ¢ iff I a; s; = 0 for every s where each a; comes

i=o 1

th row of the Pascal triangle (mod 2) and c is the

from the c¢
smallest integer such that the above recursion holds.
Proof. S is de Bruijn with C(S) = ¢ iff Sy = f(si+1°--

sé+c) for every s; € S, which is equivalent to s; =

z a; s from results by Golomb [Ref. 5: pp. 27-43]

j=1 c

mentioned earlier. In turn s, =% a., s.. . = 0 from proper-
i 520 j Ti+j

ties of the Pascal triangle given in Section II. Q.E.D.

i+j

This lemma is used in the following theorem to show that
complexity is preserved by various operators on de Bruijn
sequences.

Theorem 2. If S is a de Bruijn sequence having complexity

C, then C(S) = C(5) = C(rS) = C(r5) = c.

Proof. Part I (reverse operator)

Let S; Si+l °°° Si+c be an arbitrary (c+1l) long segment
of S which satisfies

33
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(1)

0 35 Si+j = 0

"ea

j
by Lemma 3. Since the aj sequénce is palindromic as shown

s. a (c+l) long segment of rS satisfies

Si+1 5%

earlier, Si+c

equation (1). Thus C (rS) = c.

Part IT (complement operator) substituting Ei *tt Si.c
b4

the c+1 long segment of 5, into equation (1), the results are

a sS5. + a . + eoee + 3 5. + )
o1 1S c-1 Si+c-1 . Sjec =

ag (sj+ 1) +ay (s5, + 1)+ eee vac ) (55,00 %1+ 3

(s

C (o

- 5 i

ive +1) i a. s... *+ 'EO aj (mod 2). Since there are
o

an even number of nonzero ajs, z aj = 0 and equation (1)
i=0

is satisfied. Therefore, by Lemma 3 C(J)

"

C.

Part III (reverse complement operator), by Parts I and
II, it follows immediately that C (rS) = c. Thus C (S) =
C (rS) - C (s) = C (r%)
Q.E.D.
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IV. TRUTH TABLES

Linear and nonlinear feedback functions were used in

conjunction with n-stage shift registers to generate de Bruijn
sequences in Section II. The input Xy was generated as some
function £ of the current state Xq X5 *0e X, that is

(1) Xg = f (xl X, eo xn)
or equivalently writing f as in (2) when specializing for
cycles only functions.

(2) Xg =X, * g (xl s xn_l).
Extensive use is made of equation (2) since results for

cycles only are desired.

A. FULL TRUTH TABLE

The full truth table is a useful way of listing the
functional value X5 from equation (1) for each possible
state of the shift register. The functional values in Table
4.1 is an example of a full truth table for a de Bruijn
sequence (00011101).

Examining the full truth table it becomes apparent that

the information in the lower half (below the dashed 1line)

is redundant, since the values of f (x1 X, XS) for X; = 1
s in the lower half are merely the complements of the values

of f (x1 X, x3) for X5 = 0 in the upper half for the identical

b

Lp
»

values of Xq X,. This suggests that the upper half (or the

AR RS
A B e

Pl
»

v AN,

35
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TABLE 4.1
FULL TRUTH TABLE OF (00011101)

Current State Functional Value
(x3 X, xl) Xg = f (x1 X, x3)
0 0 O 1

o
(=]
—
=

0 1 0 0
__ 0.1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

lower half) of the truth table can display all the informa-

tion for a function generating only cycles.,

L N
»

B. HALF TRUTH TABLE

PN N
()
L L0

2

Focusing on equation (2), since e is always 1 in the

L'
L'.l ."

lower half this can be viewed as complementing the functional

-
.
R

values for g (xl KR xn-l) in the upper half. In this manner

Y

QA the half truth table in Table 4.2 is constructed for the same
ﬁi de Bruijn sequence (00011101) to aid comparison with Table
32 4.1. From this point on the term truth table will always
i mean the upper half truth table with x = 0, unless noted
L, otherwise.

O
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TABLE 4.2
HALF TRUTH TABLE OF (00011101)

X, X1 | 8 (xp x5)
0 0 1
0 1
1 0 0
1 1 1

The string of functional values in the truth table is
defined to be the generator G = {g, g, °*** g } where
0 1 21’1‘1_

. 1
the subscripts of g are the decimal equivalent of

Xn-1 X Both the weight and parity of generator G
will be of interest as the investigation of this paper con-
tinues. Whenever the parity or weight of the truth table

is mentioned in this paper, it is referring to the generator

of that truth table.

C. .ZERO TRUTH TABLE

The zero truth table is defined as the truth table in
which all functional values are zero. The zero truth table
for n = 3 contained in Table 4.3 is basically the output of

a circulating register which generates pure cycles.

Pure cycles are defined as cyclic permutations of the

original state. The zero truth table in Table 4.3 generates

R A
L A A

the four pure cycles shown in Fig. 4.1. The number of pure

LI
Y
AR

Y
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TABLE 4.3
ZERO TRUTH TABLE FOR n = 3

S, [
. B .
N Sttt
‘. 3, .I 'q ‘l . ¢
PP

T.r
’

T, vT
('}
.

o
o
]

a8 a4

1 0 0
1 1 0

cycles Zﬁ has been shown [Ref. 7: p. 120] to be

n
2z =1 £ ¢ /d,
n djn

(d) 2

Eulers totient function ¢ (d) is the number of fractions
of the form 2/d where 1<a<d and ?/d is in lowest terms. The
summation is over all positive integers d which divide n,
denoted (d|n). It is further shown [Ref. 5] that Zn-l is
the minimum possible weight truth table that can generate a
de Bruijn sequence.

In the next section, the proof of theorem 6 gives an
example of how pure cycles can be joined in a way to create

a de Bruijn sequence that has a minimum weight truth table.

Table 4.5 gives a listing of Zn and Zn-l for 1<n<7.

D. ONES TRUTH TABLE
The ones truth table assigns a functional value of 1 to
every entry of g (xl s xn-l)' The ones truth table depicts

the output of a complementing shift register. The input is

38
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Fig. 4.1

Pure Cycles (n=3).
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always the complement of the output, i.e. f (xl see X ) =

n
1 + X, The ones truth table for n = 3 is shown in Table
4.4. The complementing cycles from Table 4.4 are depicted

in Fig. 4.2.

TABLE 4.4
ONES TRUTH TABLE (n = 3)

X, Xg g (xy xp)
0 0 1
0 1 1
1 0 1
11 1

%
The number of complemenﬁing cycles Z_ [Ref. 7] is

*
:n = Zn -1 z ¢ (2d) 2?3.
— Z2n 2d|n
%
Since summation for Zn is over all 2d (even) numbers which

*
divide n, for n odd Zn = Zn'
7

[

Accordingly Fredricksen [Ref. 5] shows truth tables of max

weight that can generate a de Bruijn sequence is

AR S

Iy n

» < ' % n- 1 * . . ra

S The values of Z = and 2 - 2, * 1 are given in Table 4.5
"

O for 1<n<7. Also included are the number of de Bruijn se-
s -

- quences having truth tables of maximum or minimum weight
o from a listing by Fredricksen [Ref. 5].
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TABLE 4.5
PURE CYCLE COMPILATION

¥ de Bruijn # de Bruijn
Sequences Sequences
with Min n-1 with Max
n Zn Zn-l Wt Truth Table Zn* 2 -Zn*+1 Wt Truth Table
1 2 1 1 1 1 1
2 3 2 1 1 2 1
3 4 3 2 2 3 2
46 5 12 2 7 3
5 8 7 206.32 4 13 20
6 14 13 214, 34,52 6 27 214
7 20 19 228.35.53.13 10 55 220.3
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Fig. 4.2 Complementing Cycles (n=3)

E. EFFECTS OF CHANGING THE TRUTH TABLE
If the ones truth table in Table 4.4 is changed so that

g (0,1) = 0 vice 1, the truth table of Table 4.6 is produced.

42
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TABLE 4.6
TRUTH TABLE (TABLE 4.4 MODIFIED)

X2 % g (x5 X3)
0 0 1
0 1 0
1 0 1
11 1

This change in the truth table effects the cycles of Fig.
4.2 by joining them as depicted in Fig. 4.3. [Indeed the
change produces a Hamiltonian path for the de Bruijn sequence
(00010111).

Suppose the truth table of Table 4.6 is now changed so
that g (00) = 0 vice 1. This produces the truth table in

Table 4.7, and its cyclic composition in Fig. 4.4.

TABLE 4.7

&
.

¥ ‘H‘ ; -"; I‘A‘. ]
n{ i _."-'.. '.-'.n ,

L 4

TRUTH TABLE (TABLE 4.6 MODIFIED)

L r ' of B
4
t,(?{ .- '. »
L e ¥

g (X1 x;)
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s
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Fig. 4.4 Cyclic Composition of Table 4.7.
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This change in the truth table causes the cycle to split
into two cycles. Suppose (xn see xl) is on element on upper

of two cycles as shown in Fig. 4.5 and that its successor is

Fig. 4.5 Two Cycle Graph.

)
s
\"‘.
e

xn-l e Xy 1l as £ (xl v xn) = 1. If the truth table is

now changed so that f (x1 sse X

'.":"
a'a
o]

%

n) = 0, then Xp-1 "0t X 0

P2 is the new successor for x  <+¢ Xx; . Retaining the cycles
I‘:\J'

ﬁ? only condition f (x1 *ec Xpg xn)must now be 1. So the

"::'{ X e e 1 e ace

19 successor of x x4 X; is now x_ . x; 1 . One cf
f%j two things can happen how depending on whether Xp.1 "t Xy 0
f%ﬁ is on the upper or lower cycle.
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First if (xn_l coe xlo) is on the upper cycle, then that

cycle is split as shown in Fig. 4.6 forming three cycles.

Fig. 4.6 Cycle Splitting.

Otherwise if (xn_1 v x10) is on the lower cycle, then

those two cycles are joined as shown in Fig. 4.7.

Clearly the parity of the cycles changes for each change

A A

in the truth table. The following theorem frow Golomb

[Ref. 7: p. 122] shows that the parity of the number of cycles

LRI e P
e N

w e

it

and the parity of the truth table generator are equal.

R A o
‘_ﬁ'\
aw

Theorem 3. For n>2, the parity of the truth table is

LN
R I

Y o 'ad
ity

»

equal to the parity of the number of cycles of the truth

.'f

-

table.
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Since a de Bruijn sequence is one cycle by definition,
the following corollary of theorem 3 is given.
Corollary. 1If a sequence is de Bruijn, then the parity

of the TT of that sequence 1s odd.

O
e

Fig. 4.7 Cycle Joining.

F. SPECIAL NUMBERS

Analyzing the effects of de Bruijn sequence operators
on their truth tables, certain binary numbers are found to
have special properties which can be exploited in later

analysis.
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1. Type RC Numbers

If X = x; *** x_ is a binary number, such that

1 n
ih ses El = x; *++ x, then X is called a RC number.
Lemma 4. For n even there are exactly 2? type RC numbers.
Proof. For n even, if X is an RC number, then
Xy tct X, = X, *** x; by definition. Therefore,
x; = En’ X, = —h-l’ etc. Thus xy+++x can be written as
X1Xp®® "X X ---fzfl . Since % positions can be filled in

w3

7
either ofntwo ways, the total number of RC numbers for n
even 1s 27.
Q.E.D.
There are no type RC numbers for n odd, since this
would require that x = §h+1 which is impossible.

n+l
2. Type R Numberg 2

If X = Xqeeexy is a binary number such that

Xp*oeX, T X 000Xy, then it is called a type % number.
Lemma 5. For n even there ar8+?xactly 27 type R numbers,

7

and for n odd there are exactly 2 type R numbers.

Proof. The proof for n even parallels that of Lemma 4

s £
Pl

and will not be repeated. For n odd, since Xp+1 = Xp+1

.
..
s

o
o
.
)
N
o'
v

-~ 2
;} there are n+l positions to be filled in either”gf, two
ﬁﬁ ways. Therefore, for n odd there are exactly 2 2 type R
5& numbers.
I-::s
% Q.E.D.
b-."-
)
o
":
v
o,
. 49
:
o
N
AT sk 4% 2 A e e m e m e e
e N '-\ q:j:';;:‘. 2':._\" . :"‘- )y x e ‘u CN I ':r '1




RT e Yy
RRA AT
ot ‘.l.‘l’ »

L

2

¥

l"’o"‘
P AR

-“ 'l‘ -’-..
‘> "y %

:
,

¢

2

A useful way of organizing special numbers and other
truth table values to assist in evaluating effects on the
generators for various operators is shown in Table 4.8 for
n=>5andn=6. The numbers are the decimal equivalent of
the binary (n-1)-tuple, Xpo1tr Xy from the feedback function

Xg = Xp * 8 (Xp vt oxp )
which also corresponds to the truth table state.

For example for n = 5, if £ (2) = 1 for some sequence
S then: f (11) =1 for r S, £ (4) =1 for r S, and f (13) =1
for S. In general, for some operator 8 and some number a,
if £ (a) = 1 for some sequence S, then f (Ba) =1 for B3 S.

Special numbers have properties in addition to this. If a

is a type RC number and f (a) 1 for S, then f (a)= f (r a) =
1 for r S. Similarly if y is a type R number and f (y) =1
for S, then £ (y) = f (ry) = 1 for r S. Thus, if we want to
shown S is a sequence such that S = r §, then if f (a) = 1

in S, then £ (r a) = 1 in S also.

G. GENERATOR ANALYSIS

Analysis of the generators for the de Bruijn sequences
S, rS, S5, §r S in Table 4.9 appears to indicate the gener-
ator G of sequence S denoted G (5) is the reverse of the
generator G (S). Notice also that G (r S) =r [G (r §)]
for S. Although Table 4.9 is an example of a single sequence
S, it is not an isolated incident; in general the result
G (S) = r [G (5)] holds and is proven in the following

theoren.
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TABLE 4.8
TRUTH TABLE ANALYSIS CHART

< Truth table states
Type R numbers

(0,6,9,15)

Type RC numbers
(3,5,10,12)

< Truth table states
Type R numbers
(0,4,10,31)
Type RC numbers

(None)

S S rS rS

S S rS rS

rS rS S S
rS rS g S
0 15 0 15

1 14 8 7

2 13 4 11

3 12 12 3

5 10 10 5

6 9 6 9

0 31 0 31

1 30 16 15

2 29 8 23

3 28 24 7

4 27 4 27

) 26 20 11

6 25 12 19

9 22 18 13

10 21 10 21
14 17 14 17
51

(n=5)

(n=6)
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TABLE 4.9

GENERATOR ANALYSIS FOR de BRUIJN SEQUENCES
(r S#53)

S 11111001000111011010011000001010
S 11111010100000110111000100101100
rS 11111010100000110010110111000100
TS 11111001101001000111011000001010

eee,x; G (S) G () G (rS) G (rS)

xn—l,
0 1 1 1 1
1 0 1 1 0
2 1 0 0 1
3 1 0 0 1
Type RC 4 0 1 1 0 )
5 0 1 1 0
O ® » o+ o o r
|
Type R 7 0 1 1 0
other than S 1 0 0 1 !
0§ 15 @ 1 0 1 0 |
10 1 0 0 1 \
|
11 1 0 0 1 |
r_g;g 12 0 1 1 0 ‘
s 13 0 1 1 0 |
|
e 14 1 0 0 1
_.;_: 15 1 1 1 1
}?Q
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. Theorem 4: If S is a de Bruijn sequence with generator

G (S), then § is a de Bruijn sequence with generator
r [G (S)].

Proof: Let G (S) = {gl, gyr }  then the full

o
r S -
2N 1

truth table for S is given in Table 4.10.

TABLE 4.10
FULL TRUTH TABLE FOR S

*n Xp-1 *p-2 77 X% £ (xl’ Tt Xn)

0 O 0 e & 9 0 gl

0 0 0 eee 1 g,

0 1 1 oo 1 g

______________ L L

1 0 0 e 0 §1

1 0 0 e 1 g,

1 1 1 oo 1 g7n-l

If x b X, 4>

in S, then §n’ X

Tty Xy, f (xl s xn) is a (n+l) long string

no1e t0ts X, Exy Xy e x ) is a (n+l)

long string in 5.

:!3 Therefore we can transform each line of the full truth
"o
- table for S by taking its complement to get Table 4.11.
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TABLE 4.11

FULL TRUTH TABLE FOR S (NON STANDARD)

Xn Xp-1 Xp-oz vt Xp | E(xgs X, tee X))
11 1 see1]0g
11 1 e 0| g,
10 0 eer 0| T .
Hn 1
0 1 1 cee 1 g
0 1 1 s 0 g,
0 0 0 see 0 gzn-l

Rearranging the rows from top to bottom, the TT for S is
placed in standard form as depicted in the Table 4.12.

Further examination of the generators in Table 4.9 shows

the structure of G (5) to be remarkably similar to the

structure of G (r S), with the exception that the functional

r! values of type R numbers (6 § 9) are transposed. If, however,
E) these values should be the same then clearly G (5) = G (r S)
é% or S = r 5. Indeed, this occurs twice for n = 3 and 64 times
:’ tor n = 5, and will be shown to happen for all odd n>3.

This cannot happen for n even, because there are no type

= RC numbers in the truth table.
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TABLE 4.12
FULL TRUTH TABLE FOR §

X X Xpop Xy f (xl, Xop *** , X )
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Clearly G (3) is r [G (9)]
Q.E.D.
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V. RESULTS

Examining Table 5.2 it can be quickly determined that the
number of de Bruijn sequences of given complexity for 3<n<6
is 0 (mod 4). Games and Chan [Ref. 1] made this conjecture,
but were able to show only that the distribution a (¢, n)
was 0 mod 2. Their result followed by showing that for a
given de Bruijn sequence S of complexity c, there existed
a unique de Bruijn sequence S also having complexity c.

In Section III it was shown that reverse and reverse dual
operators preserve the complexity of de Bruijn sequences as
well.

If each of these new operators produced unique de Bruijn

sequences, then it would be easy to show that the numbers

a (c, n) 0 (mod 4) since for every de Bruijn sequence S
there would also exist §, r S and r § all de Bruijn and
unique having complexity c. As mentioned in Section IV, the
sequences r S and r S are not always distinct from the
sequences S § § respectively; however, for n even the next
theorem shows that all four of these sequences are distinct.
In addition it will be shown that RC sequences occur for

all n odd, and a lower bound for the number of RC sequences

will be established for all n and investigated for n = 7.
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A. o (c, n) = 0 MODULO 4 FOR n EVEN
Etzion and Lempel [Ref. 6] give a proof that a (c, n)
is congruent to 0 mod 4 for ¢ n even. In the proof for n
even given here a different approach is taken.
Theorem 5. For even n>3, the numbers a (c, n) = 0 (mod 4)
for a de Bruijn sequence S of span n and complexity c.
Proof. From theorem 1, it is known that for a de Bruijn
sequence S of complexity ¢, that 5§, r S § r § also have
complexity c¢. Games and Chan showed the uniqueness of §,
so all that remains is to show that r S is distinct from
S, or equivalently that r S is distinct from S for n even.
Suppose on the contrary that S = r 5. Then consider
an n-tuple Oa_ _; *°-* ay in the truth table such that
£ (ag **+ a; ; 0) = 1. Then 0a, ; *°* 2; 1 is a n+l long

string in S, and o 51 s an-l 1 is a n+l long string in r S.
IfS=1r5S

then 0 a; «-- a_ _,1 is a n+l long string in S,
which implies

that 1 a; <+ a 0 is a n+l long string in S, and

n-1
therefore f (51 ces En-l 0) = 1. This must hold for every

Xy **° X 0 such that f (x; <++ x _; 0) = 1. Pairing

n-1

these vectors, a; **+ a and a__, *** a; , two at a time

n-1
results in an even number of 1's in the truth table. So

there must be a vector which pairs with itself as the parity

of ones is odd. But then x__; *** X, =X, *** X , is a

..................
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contradiction since xn+1 # xn+1 for n even. Therefore for
2 2

neven S #Fr Sand r S#S, sor S and r S are distinct

and « (¢, n) = 0 mod 4.

Q.E.D.

B. RC SEQUENCES EXIST FOR ALL ODD n>3

The results a(c,n) 0 (mod 4) for all n are not obtained
as hoped for. For n = 3 and n = 5 RC sequences are known
to exist, but it is not known if this is true for all odd
n>3 or just some. The following theorem shows that RC
sequences exist for all odd n>3. Recall that RC sequences
are those sequences S for which S = r S or equivalent by
S=1r S sincer (S§) =r (r §) yields § = r S.

Lemma 6. The sequence formed by joining all pure
cycles of n-tuples is de Bruijn.

Proof. The least elements of each pure cycle for a

Ziven n are easily composed and arranged in order by weight

according to the algorithm in Appendix A. Since the pure

cycles contain all n-tuples exactly once, all that remains

[ R M e
. B A
» P N ]

e
LRy !

is to show how each pure cycle can be interconnected, thus

P
v
B

forming a de Bruijn sequence. For each cycle of wt a>l

-l..vl

EE; there exists a least element '"2X+1'" (necessarily odd, if

bl it were even (2X) then "X'" is on the same cycle and smaller)
whose predecessor "X" has wt (a-1). Since the pure cycles

L are ordered by weight, it is clear that the least element

sg of each pure cycle of wt a>1 can be joined to a cycle of

oty
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wt (a-1) by changing the truth table for its predecessor,
i.e. g(X) becomes 1. In this way all the pure cycles are
now interconnected, and the sequence 1is de Bruijn.

Q.E.D.

Theorem 6. For all odd n>3, there exist RC de Bruijn
sequences.

Proof. An RC de Bruijn sequence can always be composed
in the following way for n>3. First construct a light cycle
(LC) for those pure cycles of wt aigil identical to the
method used in Lemma 6. Note that when the cycles of
wt Eil are joined to cycles of smaller weight the truth
table is changed at positions whose weight is less than

n-1 . For every X such that f (X) = 1 in LC, induce

2
f (r X) = 1 on the pure cycles of wt (n-a) > E%l , forming
a heavy cycle (HC). Note that HC is the reverse complement
of LC. All of the positions changed so that g (X) = 1 on
HC are of weights bigger than or equal to Q%l .

Join LC and HC by using a type RC number, y, which exist
by Lemma 4, since for n odd the truth table states have
even (n-1) length. The RC number y has weight E%l . Letting
f (Y) = 1 then joins LC and HC forming one sequence. By
Theorem 1 the sequence is RC, and by Lemma 6 the sequence
is de Bruijn.

Q.E.D.
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C. LOWER BOUND ON NUMBER OF RC SEQUENCES
1. Theorem
A weak lower bound on the number of RC de Bruijn
sequences is established.

Theorem 7: A lower bound on the number of de Bruijn
RC sequences for odd n>3 is A - 2 - , where A is the

number of possible different interconnections for pure

cycles of weightigil as determined by the Best method

[Ref. 5].

Proof: Restricting attention to those cycles of
wtgg%l (since the other connections are induced), the
Best method gives the number A of possible different inter-

connections fgglthe pure cycles of weight<§;-l -p-pince

there exist 2 2 type RC numbers, this gives 2 2 ways

of joiping A different pairs of cycles for a total of
gir

—

A2 possibilities.

Q.E.D.

2. Example for n = 7

The pure cycles of wt<3 and the adjacency matrix
of A are given in Tables 5.3 and 5.4 respectively. The

value of the determinant of the adjacency matrix is 38,880

L l‘ " l‘ -
A A A A

for any diagonal element. This gives a lower bound of

S §--4
018

38,880 X 8 = 311,040 for the number of de Bruijn RC sequences.
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TABLE 5.1

PURE CYCLES FOR N=7 § wt < 3

10
14
18
22
26
38
42

''''''''''

12
20
28
36
44
52
76
84

.
~

24
40
56
72
88
104
25
41

16
48
80

112
17
49
81
50
82

61
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32 64

96 65

33 66

97 67

34 68

98 69

35 70

100 73

37 74
s
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TABLE 5.2
ADJACENCY MATRIX FOR n=7

1 -1 0 0 0 0 0 0 0 0
-1 7 -2 -2 -2 0 0 0 0 0
0 -2 7 0 0 -2 -1 -1 -1 0
0 -2 0 7 0 -1 -1 -1 0 -2
0 -2 0 0 7 0 -1 -1 -2 -1
0 0 -2 -1 0 0 0 0 0
0 0 -1 -1 -1 0 3 0 0 0
0 0 -1 -1 -1 0 0 3 *0 0
0 0 -1 0 -2 0 0 0 3 0
0 0 0 -2 -1 0 0 0 0 3
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VI. CONJECTURES

Although a complete proof for a (¢, n) = 0 (mod 4)
has yet to be given, a technique for grouping RC sequences
in a 0 (mod 4) fashion will be demonstrated for n = 5.
However, the technique fails to preserve complexity in
every case. However, for n = 5 the complexitites produced
were congruent to 0 (mod 2) and when the complement of
each sequence is added a 0 (mod 4) distribution results.
It remains, however, that the compléxity of the generated
sequences are not determined apriori. The technique pre-
sented is interesting in its own right, and it is hoped
that the interested reader may be able to apply it towards

a solution of the 0 (mod 4) distribution.

A. RC SEQUENCE GENERATOR TECHNIQUE

Table 6.1 shows a listing of four RC sequences and their
generators. The technique used was to choose in turn each
of the type RC numbers to have a functional value of 1.

Note that the complexity of Sz and S5 are both 23,
while the complexity of 310 and S12 are both 29. At present
there is no way of knowing which pair of RC sequences will
have the same complexity, except that it appears C(Sk)=C(SrE)
iffall four RC sequences have the same complexity. A listing

of the generators for each of the 32 pairs of RC sequences




TABLE 6.1
RC GENERATOR TECHNIQUE
C(83)=23 C(Ss)=23 C(Slo)=29 C(Slz)=29

G(S3) G(Sg) G(S;q) G(S;,)
1 1 1 1
1 1 1 1
0 0 0 0
1 0 0 0
1 1 1 1
0 1 0 0
1 1 1 1
1 1 1
1 1 1 1
1 1 1 1
0 0 1 0
0 0 0 0
0 0 1

1 1 1 1
1 1 1 1

R 1 1 1 1

Lm indicates RC number.

2;2 S; = 11111001010001001101110101100000

;:’\ SS = 11111001011000001101110101000100

Fb% 510 11111001010110000011012101000100

= 11111000001101110101100101000100




A ] A A
............
-----------------
- a .

is prepared in Table 6.2. These are listed in order byv
W(G) and then by complexity as far as the groupings allow.
Keep in mind, that the complement of each RC sequence is not

included in the table. A close analysis of this table then

shows a 0 (mod 4) grouping for the number of RC sequences

of complexity ¢ and span n = §.

B. PROBLEMS

For n = 7, there exist 6 type R numbers (other than 0
& 64) and 8 type RC numbers in the truth table. This large
number of possibilities will create considerable problems
in extending this idea to n = 7 and beyond.

Using this approach a large scale computer based analysis
is essential to any further investigation of RC sequences
for n>7. Considering the number of de Bruijn sequences for

17

n =7 to be 25' or 1.42 x 10 an algorithm for generating

. . . . 17
only the RC sequences is crucial, since generating 10

de Bruijn sequences is not technically feasible. Though
Theorem 7 establishes the lower bound of 311,040 RC sequences
for n = 7, this is a very weak bound and a presumably still

6

conservative estimate would be on the order of 10 actual

A

RC sequences for n = 7.
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TABLE 6.2

RC de BRUIJN SEQUENCE 0 (Mod 4)
GROUPING FOR n=5

(S) WEG(S)] C(s)
1001 © 101 7 25
25
27
27
27
27
29
29
31
31
31
31
31
51
31
51
31
31
31
51
31
31
31
31
011 11 23

100 0 1

O

(=]

QOO OO

o oOFo
=

100 1011 011

o
o~

|

O O

101

(el
(]

0010 11011

o

[ =)

O
=

100 0010 111

= O O O
(=
ol

(=R |

101 1011 1 1 011

=1

o ol Of =

1
100 10 1011 111

O
WWOWWOWWWWIWW D~ ~3~1 3~~~ 1~~~ ~1~) ~

o o+

1
111 00 1111

=
of

101 1011 0 1 111 11 25

O
p—
QO OO ol © oj— O

of -
(L
-t
[
(3]
~1
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II APPENDIX A
[ ALGORITHM FOR GENERATING LEAST ELEMENT
i FOR EVERY PURE CYCLE

This algorithm is designed to produce the least element
of each pure cycle. The least elements are initially in
decreasing order. A simple rearrangement will group the
least elements by weight in decreasing order if necessary.
The algorithm to be presented is an adaptation of the
8-operation discussed in a paper by Fredricksen and Maiorana
[Ref. 10], to generate a lexicographic list of necklaces.

ALGORITHM: Begin the Q@ operation with the zero n-tuple,
which is the first least element for the zero pure cycle.

Q Operation: Q (x1 R xn) = (yl e yn) =Y
1. Find the largest subscript j such that
X. = 0 and X = 1 for k>j.

J

2. Form Xy X, e X;.

1 1 where xj =1 |
3. Repeat Xq Xy *e xj-ll until n numbers are produced.

i) If n = tj for some integer t then let

;. Y=x1...xj_llxl...xj_ll...xl...xj-ll
: ii) If n>tj then finish with xye-ex .,
J
then let Y=x1---xj_1l-'-x1~--xj_11x1---xn_tj.

o 4. Y is a least element iff n=tj
éﬁb 5. Repeat beginning at step 1 until the final least
N4
;;fg element (1)" is reached.




TABLE A.1

< ALGORITHM FOR N = 7

Wt
0000000 0
0000001 1
0005010 =
0000011 2
0000100 *
0000101 2
0000110 *
0000111 3
n001000 *
0001001 2
0001010 *
0001011 3
0001100 =*
0001101 3
0001110 *
0001111 3
0010010 *
0010011 3
0010100 *
0010101 3
0010110 =
0010111 4
0011001 =
0011010 =
1011011 1
0011100 =+
0011101 4
0011110 =
0011111 5
0101010 *
0101011 4
0101101 *
0101110 *
0101111 5
0110110 =
0110111 5
0111011 =
0111101 =
0111110 =
0111111 6
1111111 7
* Unacceptable
68
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Table

tabulated in Table A.Z2.

PURE CYCLE

o= O

(93]

~N O

-------
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TABLE A.2

A.1 illustrates the algorithm for n=7.

LEAST ELEMENTS (n=7)

0000000
0000001
0000011
0000101
0001001
0000111
0001011
0001101
0010011
0010101

0001111
0010111
0011011
0011101
0101011
0011111
0101111
0110111
0111111
1111111
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11

19
21

15
23
27
29
43
31
47

55

63
127
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Arranging

in order by weight, the least element for each pure cycle is

.......................
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